

Welcome to yagwr’s documentation!

Contents:

	Installation

	Usage
	Default host & port

	SSL support

	Actions & rules

	Example

	API documentation
	yagwr.async_in_thread: Running an asyncio loop in a thread

	yagwr.checker: The condition checker

	yagwr.rules: Rules container

	yagwr.logger: Logging helpers

	yagwr.webhooks: Webhooks

Indices and tables

	Index

	Module Index

	Search Page

Installation

To install this package:

pip install yagwr

Usage

After the installation, a script called yagwr will be available:

yagwr rules_and_actions.yml

For a complete list of all command line options, please execute:

yagwr --help

Default host & port

By default, yagwr connects to 127.0.0.1 and listens on port 7777.
Use the --host and --port options to change this values.

SSL support

yagwr has no native SSL support. It is recommended that you use
NGINX [https://www.nginx.com/] or Apache [https://www.apache.org/] and configure
a reverse proxy.

Reverse proxy with NGINX

To setup reverse proxy with NGINX, you need to do the following:

server {
 listen 443 ssl;
 server_name subdomain.domain.tld;

 ssl on;
 ssl_certificate /etc/letsencrypt/live/subdomain.domain.tld/fullchain.pem;
 ssl_certificate_key /etc/letsencrypt/live/subdomain.domain.tld/privkey.pem;

 access_log /var/log/nginx/ssl_subdomain.domain.tld-access.log;
 error_log /var/log/nginx/ssl_subdomain.domain.tld-error.log;

 location / {
 proxy_cache off;
 proxy_pass http://localhost:7777;
 include /etc/nginx/proxy_params;
 proxy_read_timeout 3600;
 }
}

Note

On Debian [http://www.debian.org] based operating systems the file
/etc/nginx/proxy_params is usually present. If that’s not the case,
then create this file with this content:

proxy_set_header Host $http_host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;

See also: https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy

Reverse proxy with Apache

To setup reverse proxy with Apache, you need to do the following:

<VirtualHost *:443>
 ServerName subdomain.domain.tld

 ErrorLog ${APACHE_LOG_DIR}/subdomain.domain.tld-error.log
 CustomLog ${APACHE_LOG_DIR}/subdomain.domain.tld-access.log combined

 SSLEngine on
 SSLCertificateFile /etc/letsencrypt/live/subdomain.domain.tld/cert.pem
 SSLCertificateKeyFile /etc/letsencrypt/live/subdomain.domain.tld/privkey.pem
 SSLCertificateChainFile /etc/letsencrypt/live/subdomain.domain.tld/fullchain.pem

 ProxyPreserveHost on
 ProxyPass / http://127.0.0.1:7777/
 ProxyPassReverse / http://127.0.0.1:7777/
</VirtualHost>

Actions & rules

yagwr parses a YAML file that contains rules and actions. When Gitlab sends a POST request
to the server, yagwr goes through the list of rules. If a rule matches the request, then the action
is executed.

Format

The top level structure of the YAML file is a list with this shape:

- condition: <COND>
 action: <ACTION>

- condition: <COND>
 action: <ACTION>

...

The file must have at least one condition.

Rules (<COND>)

The following request properties can be checked in the rules:

	Property

	Description

	path

	The request path, e.g. /webhook

	gitlab_token

	Value of the X-Gitlab-Token
header

	gitlab_event

	Value of the X-Gitlab-Event
header

	gitlab_host

	Hostname of the gitlab instance
take makes the request

The condition can be either

	key <OP> value where key is a property as shown in the table
above and <OP>:

	=: equals

	!=: not equals

	~=: match regular expression

	!~=: does not match regular expression

	any: LIST of conditions: at least one condition must be true

	all: LIST of conditions: all conditions must be true

	not: condition: negates the condition

Examples

	X-Gitlab-Event must be 0xdeadbeef:

- condition: gitlab_token = 0xdeadeef

	X-Gitlab-Event must be 0xdeadbeef and the host must match gitlab[0-9]+.example.com:

- condition:
 all:
 - gitlab_token = 0xdeadbeef
 - gitlab_host ~= gitlab[0-9]+.example.com

	X-Gitlab-Event must be either Push Hook or Tag Push Hook and the host
must not be invalid.example.com

- condition:
 all:
 - any:
 - gitlab_event = Push Hook
 - gitlab_event = Tag Push Hook
 - not:
 - gitlab_host = invalid.example.com

Actions (<ACTION>)

The string passed in the action is executed using /bin/sh login shell.

All HTTP-headers sent in the request are exported as environment variables
with the prefix YAGWR_ and white spaces and dashes are replaced by underscores. For example
the value of X-Gitlab-Token is available as the environment variable
YAGWR_X_Gitlab_Token.

The body of the request is piped into the stdin buffer of the first process defined in the action.

The return code of the action is ignored by yagwr, however it waits for the action to exit before it
continues with the next action.

The action is executed in the same directory where yagwr is being executed from.

Examples

action: /home/project_a/doc/build_docs.py | sendmail status@mycompany.com

Example

- condition:
 all:
 - gitlab_token = da89d228826a2ac5ba9abdf438182cfc
 gitlab_event = Push Hook
 action: ~/local/bin/checkout_repo.sh

- condition: path = /a64/logger
 action: python3 ~/local/bin/log_gitlab_event.py > ~/logs/log_gitlab_event.log

API documentation

	yagwr.async_in_thread: Running an asyncio loop in a thread

	yagwr.checker: The condition checker
	The condition dictionary

	Example

	yagwr.rules: Rules container

	yagwr.logger: Logging helpers

	yagwr.webhooks: Webhooks

yagwr.async_in_thread: Running an asyncio loop in a thread

	
yagwr.async_in_thread.module_logger = <Logger yagwr.async_in_thread (WARNING)>

	The default logger of this module

	
class yagwr.async_in_thread.AsyncInThread(coro, name='AsyncThread', log=<Logger yagwr.async_in_thread (WARNING)>)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This class allows to execute an asyncio loop in a thread.

Sometimes you need to execute asynchronous code in a seprate thread
inside a synchronous program. Starting the ioloop in a thread
is a chore. This class allows you to do that.

Inside your main task, you can get the running loop via
asyncio.get_running_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_running_loop]. The loop will have an extra
attribute thread_controller with a reference to the
AsyncInThread object.

Example:

import asyncio
from yagwr.async_in_thread import AsyncInThread

async def main_task():
 print("This is the main task")
 while True:
 print("Doing stuff")
 await some_other_function()
 await asyncio.sleep(1)

ath = AsyncInThread(main_task())

ath.start()
try:
 while True:
 execute_task()
 if should_quit():
 break
finally:
 ath.stop()

	Parameters

	
	coro (coroutine) – a coroutine, the main task. When stop() is executed,
the task is cancelled. The task is responsible to cancel other tasks
that it might have spawned.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – a string used in logging and for the name of the
thread

	log (logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]) – the logger where debug info is logged to.

	
start()

	

	
stop()

	

yagwr.checker: The condition checker

This module implements a simple checker that checks whether a condition
matches in a dictionary. It is similar to
JsonLogic [https://jsonlogic.com/] but it is also much more simpler
because it’s not a general solution and only matches dictionaries
whose keys and values are strings only.

With this module you can solve Is the value of key A equals 5
and does this regex match the value of key B?-kind of questions.

The conditions can be built directly by generating Node objects
and linking them toghether according to your logic rules, or you can
create a dictionary and parse it with parse_from_object().

The condition dictionary

You have three basic operators: ANY (corresponds to boolean OR),
ALL (corresponds to boolean AND) and NOT (corresponds to boolean NOT).

The basic grammer rules are:

<node> ::= <terminal-node> | <OP>([<node>, <node>, ...])

<terminal-node> ::= "key = value" | "key != value" | "key ~= regex" | "key !~= regex"

<OP> ::= "ANY" | "ALL" | "NOT"

The <OP> (operator) corresponds to the dictionary key. The operands (the other <node>s)
are decoded inside a list. That means that you always need at least one operator.

Example

We want to implement this condition:

(akane != kun) OR ((genma = san) AND (nabiki ~= tendou?))

The dictionary with this rules is:

{
 "ANY": [
 "akane != kun",
 {
 "ALL": [
 "genma = san",
 "nabiki ~= tendou?"
]
 }
]
}

The following dictionary will match the condition:

{
 "akane": "chan",
 "ranma": "kun",
 "genma": "san",
 "nabiki": "tendo",
}

The following dictionary will not match the condition:

{
 "akane": "chan",
 "ranma": "kun",
 "genma": "saotome",
 "nabiki": "tendo",
}

Note

For simplicity, the left-hand-side of <terminal-node> string
supports letters, numbers, dashes and underscores only. The module uses
the following regular expression \w[\w\s]* to match the left-hand-side.

Adding full unicode support would make the code unnecessarily complicated, specially
since in yagwr the dictionaries to be matched are going to contains
those characters only.

If you need something more powerful or a more general solution,
we recommend JsonLogic [https://jsonlogic.com/].

	
exception yagwr.checker.InvalidExpression

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

This exception is raised when parsing the condition-dictionary fails
because of an incorrect type was passed.

	
class yagwr.checker.Node(kind, children=[])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The base node. All nodes must have at least one children.

Do not instantiate this class directly.

	Parameters

	
	kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string representation of the kind of the node

	children (list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of the children of the node,
they must be of type Node.

	
eval(ref)

	Evaluates the condition in the node given a dictionary

	Parameters

	ref (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the dictionary to be evaluated

	Returns bool

	True if the condition matches the values
in the dictionary, False otherwise.

	
to_dict()

	
	Returns

	The condition in dictionary form.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
class yagwr.checker.LiteralNode(expr)

	Bases: yagwr.checker.Node

A Literal Node, that means it’s a terminal node. It doesn’t have children.

	Parameters

	expr (str [https://docs.python.org/3/library/stdtypes.html#str]) – the boolean expression. The operator can be one of: = (equals),
!= (not equals), ~= matches regular expression, !~= doesn not match regular expression.
The left-hand-side and the right-hand-side values are trimmed.

	
eval(ref)

	Evaluates the condition in the node given a dictionary

	Parameters

	ref (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the dictionary to be evaluated

	Returns bool

	True if the condition matches the values
in the dictionary, False otherwise.

	
class yagwr.checker.NotNode(node)

	Bases: yagwr.checker.Node

A NOT Node.

	Parameters

	node (Node) – The node to be negated

	
eval(ref)

	Evaluates the condition in the node given a dictionary

	Parameters

	ref (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the dictionary to be evaluated

	Returns bool

	True if the condition matches the values
in the dictionary, False otherwise.

	
class yagwr.checker.AllNode(nodes)

	Bases: yagwr.checker.Node

A AND Node.

	Parameters

	nodes (list [https://docs.python.org/3/library/stdtypes.html#list](Node)) – A list of nodes that all must individually match
the condition.

	
eval(ref)

	Evaluates the condition in the node given a dictionary

	Parameters

	ref (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the dictionary to be evaluated

	Returns bool

	True if the condition matches the values
in the dictionary, False otherwise.

	
class yagwr.checker.AnyNode(nodes)

	Bases: yagwr.checker.Node

A OR Node.

	Parameters

	nodes (list [https://docs.python.org/3/library/stdtypes.html#list](Node)) – A list of nodes. Only one must match
the condition.

	
eval(ref)

	Evaluates the condition in the node given a dictionary

	Parameters

	ref (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the dictionary to be evaluated

	Returns bool

	True if the condition matches the values
in the dictionary, False otherwise.

	
yagwr.checker.parse_from_object(obj)

	Parses the condition from a dictionary.

	Parameters

	obj (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The dictionary containing the condition.
See condition dictionary for the structure of the
dictionary.

	Returns

	The node representing the out-most operator of the condition

	Return type

	Node

yagwr.rules: Rules container

	
class yagwr.rules.Rule(condition, action)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This class reprents a rule. A rule is the cobination of a condition and action.
If the condition matches, the action can be executed.

	Parameters

	
	condition (checker.Node) – A Node object that holds the condition

	action (any) – the action. This object just stores the action,
it doesn’t manipulate it. Hence you can set any object you like.

	
matches(obj)

	Return whether the condition matches the object

	Parameters

	obj (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The object with which the condition
is checked. See checker for more information
about the shape of the object.

	Returns

	True if the condition matches, False otherwise

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
classmethod from_dict(obj)

	Generates a new Rule object from a dictionary.

The dictionary must have two key:

	condition: see The condition dictionary for more information

	
	action: an object (usually string) with the action to be taken
	when the condition matches

	Returns

	A new rule

	Return type

	Rule

	Raises

	checker.InvalidExpression – when parsing the condition fails

yagwr.logger: Logging helpers

	
class yagwr.logger.NamedLogger(logger, extra)

	Bases: logging.LoggerAdapter [https://docs.python.org/3/library/logging.html#logging.LoggerAdapter]

A logging adapater that uses the passed name in square brackets as
a prefix.

The extra arguments are name, a string. If name is not present
or if it’s None, no prefix is used.

Initialize the adapter with a logger and a dict-like object which
provides contextual information. This constructor signature allows
easy stacking of LoggerAdapters, if so desired.

You can effectively pass keyword arguments as shown in the
following example:

adapter = LoggerAdapter(someLogger, dict(p1=v1, p2=”v2”))

	
process(msg, kwargs)

	Process the logging message and keyword arguments passed in to
a logging call to insert contextual information. You can either
manipulate the message itself, the keyword args or both. Return
the message and kwargs modified (or not) to suit your needs.

Normally, you’ll only need to override this one method in a
LoggerAdapter subclass for your specific needs.

	
exception yagwr.logger.LoggerConfigError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Exception raised when a configuration error is detected

	
yagwr.logger.setup_logger(log_file, log_level, quiet, log_rotate=None, log_rotate_arg=None)

	Setups the logging based on log_file, log_level, quiet.

	Parameters

	
	log_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – the log file, "stderr" or "stdout"

	log_level (int [https://docs.python.org/3/library/functions.html#int]) – a log level

	quiet (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, then logging is suppressed

	log_rotate (str [https://docs.python.org/3/library/stdtypes.html#str]) – the type of rotation, "time" or "size"

	log_rotate_arg (str [https://docs.python.org/3/library/stdtypes.html#str]) – rotation arguments

	Raises

	LoggerConfigError – when the settings are incorrect

yagwr.webhooks: Webhooks

	
class yagwr.webhooks.WebhookHandler(request, client_address, server)

	Bases: http.server.BaseHTTPRequestHandler [https://docs.python.org/3/library/http.server.html#http.server.BaseHTTPRequestHandler]

The request handler for Gitlab webhooks

The Gitlab documentation [https://docs.gitlab.com/ee/user/project/integrations/webhooks.html#http-responses-for-your-endpoint]
states:

Your endpoint should send its HTTP response as fast as possible. If the response
takes longer than the configured timeout, GitLab assumes the hook failed and retries it.

For this reason this request handler pushes the request information (headers, payload) onto a
asyncio.Queue [https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue] queue and responds as fast as possible. This approach is fine because
the documentation also says:

GitLab ignores the HTTP status code returned by your endpoint.

Hence it doesn’t matter whether the processing takes a long time or even fails.

The processing itself is executed in a asyncio task.

	
finish_request()

	Helper that finished the request

	
do_POST()

	Handles the HTTP request from gitlab

	
log_message(fmt, *args)

	Log an arbitrary message.

This is used by all other logging functions. Override
it if you have specific logging wishes.

The first argument, FORMAT, is a format string for the
message to be logged. If the format string contains
any % escapes requiring parameters, they should be
specified as subsequent arguments (it’s just like
printf!).

The client ip and current date/time are prefixed to
every message.

	
async yagwr.webhooks.process_gitlab_request_task(controller)

	Main asyncio tasks that reads the requests from the queue and
launches the processing of the queue

	
async yagwr.webhooks.execute_action(request, action, log)

	Helper function that executes arbitrary commands

 Python Module Index

 y

 		 	

 		
 y	

 	[image: -]
 	
 yagwr	

 	
 	
 yagwr.async_in_thread	

 	
 	
 yagwr.checker	

 	
 	
 yagwr.logger	

 	
 	
 yagwr.rules	

 	
 	
 yagwr.webhooks	

Index

 A
 | D
 | E
 | F
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | W
 | Y

A

 	
 	AllNode (class in yagwr.checker)

 	
 	AnyNode (class in yagwr.checker)

 	AsyncInThread (class in yagwr.async_in_thread)

D

 	
 	do_POST() (yagwr.webhooks.WebhookHandler method)

E

 	
 	eval() (yagwr.checker.AllNode method)

 	(yagwr.checker.AnyNode method)

 	(yagwr.checker.LiteralNode method)

 	(yagwr.checker.Node method)

 	(yagwr.checker.NotNode method)

 	
 	execute_action() (in module yagwr.webhooks)

F

 	
 	finish_request() (yagwr.webhooks.WebhookHandler method)

 	
 	from_dict() (yagwr.rules.Rule class method)

I

 	
 	InvalidExpression

L

 	
 	LiteralNode (class in yagwr.checker)

 	
 	log_message() (yagwr.webhooks.WebhookHandler method)

 	LoggerConfigError

M

 	
 	matches() (yagwr.rules.Rule method)

 	
 module

 	yagwr.async_in_thread

 	yagwr.checker

 	yagwr.logger

 	yagwr.rules

 	yagwr.webhooks

 	
 	module_logger (in module yagwr.async_in_thread)

N

 	
 	NamedLogger (class in yagwr.logger)

 	
 	Node (class in yagwr.checker)

 	NotNode (class in yagwr.checker)

P

 	
 	parse_from_object() (in module yagwr.checker)

 	
 	process() (yagwr.logger.NamedLogger method)

 	process_gitlab_request_task() (in module yagwr.webhooks)

R

 	
 	Rule (class in yagwr.rules)

S

 	
 	setup_logger() (in module yagwr.logger)

 	
 	start() (yagwr.async_in_thread.AsyncInThread method)

 	stop() (yagwr.async_in_thread.AsyncInThread method)

T

 	
 	to_dict() (yagwr.checker.Node method)

W

 	
 	WebhookHandler (class in yagwr.webhooks)

Y

 	
 	
 yagwr.async_in_thread

 	module

 	
 yagwr.checker

 	module

 	
 yagwr.logger

 	module

 	
 	
 yagwr.rules

 	module

 	
 yagwr.webhooks

 	module

 nav.xhtml

 Table of Contents

 		
 Welcome to yagwr’s documentation!

 		
 Installation

 		
 Usage

 		
 Default host & port

 		
 SSL support

 		
 Reverse proxy with NGINX

 		
 Reverse proxy with Apache

 		
 Actions & rules

 		
 Format

 		
 Rules (<COND>)

 		
 Actions (<ACTION>)

 		
 Example

 		
 API documentation

 		
 yagwr.async_in_thread: Running an asyncio loop in a thread

 		
 yagwr.checker: The condition checker

 		
 The condition dictionary

 		
 Example

 		
 yagwr.rules: Rules container

 		
 yagwr.logger: Logging helpers

 		
 yagwr.webhooks: Webhooks

_static/minus.png

_static/plus.png

_static/file.png

